Simulation of an Adaptive X-Ray Control Interface Using Automated Anthropometry and Thermal Motion Detection

Main Article Content

Fatahah Dwi Ridhani
Winda Wirasa
Wike Kristianti

Abstract

Manual determination of radiographic exposure parameters often results in inconsistent radiation dosing due to subjective assessment of patient body habitus. This study presents the design and component-level simulation of an automated control interface that regulates tube voltage (kV) and current-time (mAs) based on patient Body Mass Index (BMI). The system architecture integrates a sensor fusion array comprising a VL53L0X Time-of-Flight sensor for non-contact vertical ranging, a strain gauge load cell for gravimetric acquisition, and an AMG8833 thermal grid to enforce a stillness protocol before measurement. A central microcontroller processes these inputs using a combined linear and quadratic algorithm to derive optimal exposure settings, incorporating a variable correction factor for machine-specific characteristics. The control logic was validated through an electronic simulation of a capacitor discharge X-ray generator. Results demonstrate robust performance, with biometric acquisition achieving gravimetric accuracy exceeding 97% and absolute vertical precision. Furthermore, the simulated high-voltage control loop successfully mapped five distinct BMI categories to their corresponding target voltages (57kV–69kV) with a deviation of less than 2%. This research confirms the analytical feasibility of utilizing automated anthropometry to drive high-voltage circuitry, offering a technological pathway to reduce operator error and standardize radiation protection in diagnostic imaging.

Article Details

How to Cite
1.
Ridhani F, Wirasa W, Kristianti W. Simulation of an Adaptive X-Ray Control Interface Using Automated Anthropometry and Thermal Motion Detection. SANITAS [Internet]. 31Dec.2025 [cited 5Feb.2026];16(2):98-08. Available from: https://sanitas.poltekkesjkt2.ac.id/index.php/SANITAS/article/view/553
Section
Full Research Article

References

1. Zierle-Ghosh A, Jan A. Physiology, Body Mass Index. In: StatPearls [Internet]. Updated 2023 Nov 5. Treasure Island (FL): StatPearls Publishing; 2025. Available from: https://www.ncbi.nlm.nih.gov/books/NBK535456/
2. World Health Organization. Body mass index [Internet]. Geneva; 2023. Available from: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index
3. Tan KCB, others. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. The lancet. 2004;
4. Dolenc L, Petrinjak B, Mekiš N, Škrk D. The impact of body mass index on patient radiation dose in general radiography. Journal of Radiological Protection. 2022;42(4):41505.
5. Inoue Y, Itoh H, Nagahara K, Hata H, Mitsui K. Relationships of radiation dose indices with body size indices in adult body computed tomography. Tomography. 2023;9(4):1381–92.
6. Aisah AN, Sutapa IGN, Wendri N. Penentuan Dosis Paparan Radiasi Pesawat Sinar-X Pemeriksaan Thorax Berdasarkan Indeks Massa Tubuh (IMT). Kappa Journal. 2021;5(2):240–5.
7. Metaxas VI, Messaris GA, Lekatou AN, Petsas TG, Panayiotakis GS. Patient dose in digital radiography utilising BMI classification. Radiat Prot Dosimetry. 2019;184(2):155–67.
8. Sari NLK, Prataminingsih P, Santoso B. Evaluasi Indeks Massa Tubuh (IMT) sebagai Dasar Penentuan SSDE (Size-Specific Dose Estimate) pada Pemeriksaan CT Scan Abdomen. Jurnal Fisika. 2022;12(2):76–82.
9. Wijaya NH, Sukwono D, others. Wireless X-ray Machine Control Based on Arduino with Kv Parameters. In: Journal of Physics: Conference Series. 2020. p. 12040.
10. Wijaya NH, Yudhana A, Sukwono D, others. X-Ray machine control with wireless based on mA parameters. In: IOP Conference Series: Materials Science and Engineering. 2021. p. 12080.
11. Sulistiyadi AH, Rochmayanti D, Wibowo AS. Bluetooth and Microcontroller Enabled Wireless Exposure Switch Development for X-ray Mobile Unit to Improve Radiation Protection. In: International Conference on Electronics, Biomedical Engineering, and Health Informatics. 2023. p. 481–92.
12. Loniza E, Riyadi S, Aditama HB, Chairunnisa K. Prototype of wireless Kv control system on x-rays machine. In: AIP Conference Proceedings. 2023. p. 100006.
13. Baladad BMS, Magsombol J V, Roxas JNB, De Castro EL, Dolot JA. Development of automated body mass index calculation device. Int J Appl Eng Res. 2016;11(7):5195–201.
14. Owolabi IE, Akpan VA, Oludola OP. A Low-Cost Automatic Body Mass Index Machine: The Design, Development, Calibration, Testing and Analysis. International Journal of Biomedical and Clinical Sciences. 2021;6(3):100–19.
15. Krisnadi DI, Ridwanto A. Rancang Bangun Alat pengukur Indeks Massa Tubuh (IMT) Berbasis Android. JOULE: Jurnal ilmiah Teknologi Energi, Teknologi Media Komunikasi dan Instrumentasi Kendali. 2021;1(1):16–24.
16. Faradisa IS, Muhammad RP, Girindraswari DA. A design of body mass index (BMI) and body fat percentage device using fuzzy logic. Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics. 2022;4(2):94–106.
17. Hasan MM, Hossain ML, Junayer MJH, Alam N. An IoT-Based Calculator for Body Mass Index Determination. In: 2024 IEEE International Conference on Signal Processing, Information, Communication and Systems (SPICSCON). 2024. p. 1–4.
18. Hapsari JP, Lestari Y, Rohman SN, Al Farisi A, Angelia N. Perancangan Modifikasi Alat Antropometri sebagai Solusi Ketepatan Pengukuran Berbasis Sensor Ultrasonik. Jurnal Akademik Pengabdian Masyarakat. 2024;2(4):110–7.
19. Umiatin U, Indrasari W, Taryudi T, Dendi AF. Development of a Multisensor-Based Non-Contact Anthropometric System for Early Stunting Detection. Journal of Sensor and Actuator Networks. 2022;11(4):69.
20. Ridhani FD, Ahniar NH, Usman AI, Putra MPAT, Atmadja S. The Design of Infant Warmer with Simple Blue Light Therapy LED Addition. Sanitas. 2022;13(1):44–55.
21. Ridhani FD. Purwarupa Penghangat Bayi Dengan Elemen Pemanas Keramik, Sensor Thermopile AMG8833 dan ESP32. 2020;
22. Ridhani FD, Pritasari P, Anggraini DR. Isi Piringku Dietary Meal Proportion Estimator Applications Using SeeFood Image Segmentations. Sanitas. 2021;12(2):115–30.
23. Ridhani FD. Automated Waste Collection Container Lid Opener Prototype with Disinfectant Sprayer as Part of Nosocomial Infection Prevention. Sanitas. 2021;12(1):1–14.